O.P.Code:23EE0203

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year II Semester Regular & Supplementary Examinations June-2025 ELECTRICAL CIRCUITS ANALYSIS-I

(Electrical & Electronics Engineering)

Time: 3 Hours				Max. Marks: 70		
		PART-A				
		(Answer all the Questions $10 \times 2 = 20$ Marks)				
1	a	Define Independent source and Dependent sources	CO1	L2	2M	
	b	Write the characteristics of series connection of resistances.	CO1	L ₂	2M	
	C	What is Magnetic Motive Force (MMF) in Electrical Engineering?	CO ₂	L2	2M	
	d	State dot rule for coupled coils.	CO ₂	L1	2M	
	e	Write the impedance equation for series RL, RC, RLC and parallel RL, RC, RLC.	CO3	Ll	2M	
	f	A load consisting of 3Ω resistance and 4Ω inductive reactance draw a current of 10 A when connected to a sinusoidal source. Determine the voltage and power in the load.	CO3	L2	2M	
	g	How is the resonant frequency related to half-power frequencies in RLC series/parallel circuits?	CO4	L1	2M	
	h	Write the expression for the quality factor of the series and parallel RLC circuit.	CO4	L2	2M	
	i	State superposition theorem.	CO ₅	L2	2M	
	j	Draw the equivalent circuit of Norton's Theorem and Thevenin's theorem.	CO5	L1	2M	
		(Answer all Five Units 5 x 10 = 50 Marks) UNIT-I				
7	_	Daniel and American Comments of Comments o	001	T 1	FB F	

2 a Develop transformation formulae for Star to Delta transformation. CO1 L1 5M b Find the voltage V0 in the circuit shown in CO1 L2 5M

OR

3	a	Explain about Source transformation technique.	CO ₁	L2	5M
	b	Convert the current source into equivalent voltage sources	CO ₁	L4	5M

UNIT-II

a Derive an expression for coefficient coupling.

CO₂ L3 **5M**

L₂

5M

5M

5M

6M

b Two coils connected in a series-aiding manner have a total inductance of CO2 275 mH. When connected in a series-opposing configuration, the coils have a total inductance of 125 mH. If the inductance of one coil (L1) is three times the other, find L1, L2, and M. What is the coupling coefficient?

- a Explain the concept of Series and Parallel Magnetic Circuits.
- CO₂ L₂ **5M** L₂

CO₂

b A coil having an inductance of 100mH is magnetically coupled to another coil having an inductance of 900mH. The coefficient of coupling between the coils is 0.45. calculate the equivalent inductance if the two coils are connected in (i) series aiding, (ii) series opposing, (iii) parallel aiding, and (iv) parallel opposing.

UNIT-III

- a Determine the series RLC circuit excited by a sinusoidal source
- CO₃ L4 5_M L₂
- b A 230V, 50Hz ac supply is applied to a coil of 0.06H inductance and CO3 2.5Ω resistance connected in series with a 6.8μ F capacitor. Calculate
 - (i) impedance (ii) current (iii) phase angle between current and voltage
 - (iv) power factor (v) power consumed.

OR

- a Describe the sinusoidal function and explain the phasor and phasor diagram concepts.
 - **4M b** A resistance of 7Ω is connected in series with a pure inductance of 31.8 CO3 mH and the circuit is connected to a 100 V, 50 Hz sinusoidal supply. Calculate i) circuit current ii) Phase angle iii) Power factor iv) Power.

UNIT-IV

8 a Draw the Locus diagram of a Series RL Circuit.

- **CO4** L2 **6M**
- **b** Obtain an expression for resonant frequency in a parallel resonant circuit.
- L₂ **CO4 4M**

OR

- a Prove that $f_0 = \sqrt{(f_1 f_h)}$ where fl and fh are the two half power 9 **CO4** frequencies of a resonant circuit.
 - **b** A RLC series circuit of $R=16\Omega$, L=5mH, C=2 μ F. Calculate the quality **CO4 5M** factor, bandwidth, and half-power frequencies.

5M

UNIT-V

- 10 a State Milliman's theorem and derive an expression for Milliman's CO5 L2 5M equivalent source of n number of parallel connected voltage sources.
 - **b** Using Millman's theorem, find current through 4Ω resistance for the CO5 L4 5M following circuit.

- 11 a Verify the reciprocity theorem for the network shown in the circuit.
- CO5 L2 5M

b In the circuit shown, find the value of adjustable resistor R for maximum CO5 L2 5M power transfer to R. Also, calculate the maximum power.

